Revista Integracion
Escuela de Matematicas
Universidad Industrial de Santander
Vol. 33, No. 2, 2015, pag. 173-189

Skew PBW Extensions of Baer, quasi-Baer,
p.p. and p.q.-rings

ARMANDO REYES*

Universidad Nacional de Colombia, Departamento de Matematicas, Bogota, Colombia.

Abstract. The aim of this paper is to study skew Poincaré-Birkhoff-Witt
extensions of Baer, quasi-Baer, p.p. and p.q.-Baer rings. Using a notion of
rigidness, we prove that these properties are stable over this kind of exten-
sions.
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Extensiones PBW torcidas de anillos de Baer,
quasi-Baer, p.p. y p.q-Baer

Resumen. El propésito de este articulo es estudiar las extensiones torcidas
de Poincaré-Birkhoff-Witt de anillos de Baer, quasi-Baer, p.p. y p.q.-Baer.
Utilizando una nocién de rigidez, probamos que estas propiedades son estables
para esta clase de extensiones.
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1. Introduction

Kaplansky [15] defined a ring B as a Baer (resp. quasi-Baer, which was defined by Clark
[6]) ring if the right annihilator of every nonempty subset (resp. ideal) of B is generated
by an idempotent. Another generalization of Baer rings are the p.p.-rings. A ring B is
called right (resp. left) p.p if the right (resp. left) annihilator of each element of B is
generated by an idempotent (or equivalently, rings in which each principal right (resp.
left) ideal is projective). Birkenmeier et al. [4] define a ring to be called a right (resp. left)
principally quasi-Baer (or simply right (resp. left) p.q-Baer) ring if the right annihilator
of each principal right (resp. left) ideal of B is generated by an idempotent.

*E-mail: mareyesv@unal.edu.co
Received: 25 September 2015, Accepted: 17 November 2015.
To cite this article: A. Reyes, Skew PBW Extensions of Bear, quasi-Baer, p.p. and p.q.-rings, Rev. Integr.
Temas Mat. 33 (2015), No. 2, 173-189.

173



174 A. REYES

Commutative and noncommutative rings Baer, quasi-Baer, p.p.-rings, and right p.q.-
Baer have been investigated in the literature. For instance, polynomial extensions in
the commutative case were studied in [1],[3], and Ore extensions B[xz;a, d] of injective
type, i.e., when « is injective, of all this kind of rings can be found in several works
(cf. [4],[5],[8],[10],[11],[13],[14], and others). Some of these works consider the case § =0
and « an automorphism, or the case where « is the identity. Nevertheless, it is im-
portant to say that the Baerness and quasi-Baerness of a ring B and an Ore extension
Blx;0,0] of B does not depend on each other. More exactly, there are examples which
show that there exists a Baer ring B but the Ore extension B[z;0,d] is not right p.q.-
Baer; similarly, there exist Ore extensions Blz; o, d] which are quasi-Baer, but B is not
quasi-Baer (see [13] for more details). With this in mind, a natural question for a given
class of Baer, quasi-Baer, p.p.-rings, and right p.q.-Baer, is the behavior with respect
to skew Poincaré-Birkhoff-Witt (PBW for short) extensions (introduced in [7]), which
are more general than Ore extensions of injective type. More exactly, it has been shown
that skew PBW extensions contain various well-known groups of algebras such as some
types of Auslander-Gorenstein rings, some skew Calabi-Yau algebras, quantum polyno-
mials, some quantum universal enveloping algebras, etc. (see [17] or [23]). In fact, these
extensions include several algebras which can not be expressed as Ore extensions (univer-
sal enveloping algebras of finite Lie algebras, diffusion algebras, and others, see Section
4). This shows the necessity to have more general results in a theory of Baerness and
quasi-Baerness for several noncommutative rings. Therefore, this paper contains a first
approach about Baer, quasi-Baer, p.p. and p.q.-rings with the purpose of establishing
necessary and sufficient conditions to guarantee that these properties are stable over skew
PBW extensions. Since we use a notion of rigidness (see Definition 3.2), we generalize
the results presented in [13] and [21] using techniques fairly standard and following the
same path as other text on the subject (see Theorems 3.9, 3.10, 3.12, and 3.13, which
are the important results of this paper). In this way, we continue the task of studying
ring and module theoretical properties of skew PBW extensions (cf. [17],[18],][23],[24],
and others).

2. Definitions and elementary properties

In this section we recall the definition of skew PBW extensions and present some key
properties of these rings.

Definition 2.1 ([7], Definition 1). Let R and A be rings. We say that A is a skew PBW
extension of R (also called a o-PBW extension of R) if the following conditions hold:

(i) RC A4
(ii) there exist elements z1,...,z, € A such that A is a left free R-module, with basis
the basic elements Mon(A) := {z® = 2" -+ 2" | a = (o1, ...,0n) € N"}.

(iii) For each 1 < i < n and any » € R \ {0}, there exists an element ¢;, € R\ {0}
such that x;r — ¢; ,z; € R.

(iv) For any elements 1 < ¢,j < n there exists ¢; ; € R \ {0} such that z;x; —¢; jz,x; €
R+ Rxy1 + -+ Ry,
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Skew PBW Extensions of Baer, quasi-Baer, p.p. and p.q.-rings 175

Under these conditions we will write A := o(R)(x1,...,Zp).

Remark 2.2 ([7], Remark 2). (i) Since Mon(A) is a left R-basis of A, the elements c¢; ,
and ¢; ; in Definition 2.1 are unique; (ii) In Definition 2.1 (iv), ¢;; = 1. This follows from
xf — 0“:1712 =50+ 5121 + -+ + Spxp, With s; € R, which implies 1 —¢;; =0 = s;.

Proposition 2.3 ([7], Proposition 3). Let A be a skew PBW extension of R. For each
1 < i < n, there exists an injective endomorphism o; : R — R and an o;-derivation
d; : R — R such that x;r = o;(r)x; + 6;(r), for each r € R.

Remark 2.4. Following the notation of Proposition 2.3, we write ¥ := {o1,...,0,}, and
A :={61,...,0,}, that is, A is the family of 3-derivations in A.

A particular case of skew PBW extension is considered when derivations J; are zero for
every i. Another case is presented when all endomorphisms ¢; are isomorphisms. These
observations are formulated in the next definition.

Definition 2.5 ([7], Definition 4). Let A be a skew PBW extension of R.

(a) A is called quasi-commutative if the conditions (iii) and (iv) in Definition 2.1 are
replaced by (iii’): for each 1 <i <n and all r € R\ {0} there exists ¢;,» € R\ {0}
such that z;r = ¢; y2;; (iv’): for any 1 <4, j < n there exists ¢; ; € R\ {0} such
that TjXq = C4 jTiTj-

(b) A is called bijective if o; is bijective for each 1 < 4 < n, and ¢; ; is invertible for
any 1 <i<j<n.

Example 2.6. The class of skew PBW extensions contains various well-known groups
of algebras such as some types of Auslander-Gorenstein rings, some skew Calabi-Yau
algebras, quantum polynomials, some quantum universal enveloping algebras, etc. A
detailed list of examples of skew PBW extensions is presented in [17],[23] or [24].

Definition 2.7 ([7], Definition 6). Let A be a skew PBW extension of R with endomor-
phisms o;, 1 < i < n, as in Proposition 2.3.

(i) For a = (a1,..., ) € N, 0% 1= o702, |a| := a1+ +ap. If § =
(B1,---,0n) € N*; then a+ 8 := (a1 + B1,. -, + Bn).

(ii) For X = z* € Mon(A4), exp(X) := « and deg(X) := |a|. The symbol = will
denote a total order defined on Mon(A) (a total order on Nj). For an element
r® € Mon(A), exp(z®) := a € N§. If 2* = 2 but 2 # 27, we write 2% = 2.
Every element f € A can be expressed uniquely as f = ag+a1 X1+ - -+ amXm, with
a; € R\ {0}, and X,,, > --- > X;. With this notation, we define lm(f) := X,,, the
leading monomial of f; lc(f) := am, the leading coefficient of f;1t(f) := amXm, the
leading term of f; exp(f) := exp(X,,), the order of f; and E(f) := {exp(X;) |1 <
i < t}. Note that deg(f) := max{deg(X;)}!_,. Finally, if f = 0, then Im(0) := 0,
lc(0) := 0, 16(0) := 0. We also consider X > 0 for any X € Mon(A). For a detailed
description of monomial orders in skew PBW extensions, see [7], Section 3.

Skew PBW extensions can be characterized in the following way.
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Theorem 2.8 ([7], Theorem 7). Let A be a polynomial ring over R with respect to
{z1,...,x,}. A is a skew PBW extension of R if and only if the following conditions
are satisfied:

(i) for each z* € Mon(A) and every 0 # r € R, there exist unique elements rq, =
o%(r) € R\ {0}, pa,r € A, such that z%r = rox® + par, where po, = 0 or
deg(pa,r) < |a| if par # 0. If v is left invertible, so is rq.

(ii) For each z,zP € Mon(A) there exist unique elements co 5 € R and pa.g € A such
that x%2° = co g2t P + po g, where cop is left invertible, pa.g = 0 or deg(pa,p) <
la+ B if pa,p # 0.

In Proposition 2.9 and Remark 2.10 we will look more closely at the form of the polyno-
mials p, » and p, g in Theorem 2.8. We start establishing an expression for the product
xr =zt - x%r, with a = (aq,...,0p) € NJ and r € R.

Proposition 2.9. We have the equality

Qn,
ar oo @ o L pOn—1 an—j Jj—1 Jj—1
x%r = x{txg oo talry =ttt (E 2o =10, (o2 (),

j=1

Qp—1
gl 2(2 N )

an 2 . .
+oaftaln 3(2 O P PN (0 Y (el (i <r>>>>x;:z)wz";x%

(23532 783(03 " (05 (0§ (- (o (T))))))Iél)xgsff“ e,
+ o7 (052 (- (opm ()2 - an, O'? =idg for 1<j<n.

Proof. Induction on the number of variables. Let us see the case n = 1. Let z, be a
variable and «,, an element of Ny. The idea is to show that

Qn,
Qn

arr =g (r)ast + Y atr ool (r)alt, of =idg. (1)
j=1

T

If @, =0 or 1, the result is clear. Suppose the assertion is true for «,,. Then

Qn
oty = g arr =, (0?{” (ryzon + Z :Cf{"_wn(afl_l(?”))iﬂfl_l)

Jj=1

Qn
= xpog (r)ant + x, <Z oI5, (oIt (T))xfll)

j=1
= (o0 T (r)zn + Snogm (r))zgm + Y afn T8, (o) (r))ad !
j=1
an+1
= ou T a4+ Y a8, (o) ()l
j=1
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which proves the case n = 1.

Suppose that the assertion is true for n. Let us see the situation when we have n + 1
variables.

Qpn41
a1 A1, a an+1 Otn+1 Otn+1 —J Jj—1 j—1
it = 2yt (0n+1 Tpiy T+ E Tyt 5n+1(0n+1(7”))xn+1>
An 41

_ a1 Qp Ont1 Otn+1 al an E : Qnt1—J Jj—1 j—1
=Ty Ty 0n+1 (T)$n+1 T xn-{-l 5n+1(0n+1(r))wn+l

= 0‘" 1 an—j Jj—1( 0n+1 j—1

= [ (§ e ol o ()l )

Qp—1
+agt e 2(2 3 6 3;111(05:”<o§i?<r>>)>wz;:ﬁ)w%n

QAp—2

R RRRET s ( Z a2 is, (O-g;‘__]é(o-ziil(o.gn ((’zﬁl(7")))))963;__12>x3211xgn
aq (Z Ig2*j52 (Ugfl(gg?’ ( .. (O'g" (031{1 (T))))))CE%1>I§3 .. 'If{"
j=1
Qn+1 - ‘
Tt < > @i ool mm;;l).

Jj=1

Equivalently,
Q41
(e %1 Qn41 7on QAn41—) Jj—1 Jj—1
oyt apra e = xft e ay (E Lrt+1 5n+1(‘7n+1(7"))513n+1)
Qn
0‘1... an 1 ap—j Jj—17 Qnti1 Jj—1 An41
e (}:w e ) e
Qn—1
(e%% an 2 Qp—1—J Jj—1 « An+1 Jj—1 % An+1
o (E:w Sua (o 5T D) ol

! (Z 252000} (05° -+ (o3 <r>>>>x§1>xgs ey
j=1
O (O )y 9
Remark 2.10. (i) By (1) we know that

o = g% (r)x® + x9S, (r) + 227 26, (00 () Ty + 207736, (02 (1)) 22

n

+ o 2,0, (00T ()2 T 4 5, (00 T ()20 T o :=idp.

n n
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Note that

Doy r = 3:0‘"715”(7") + 3:0‘"725 (on(r))zn +x0n™ 36 (o (T)):E2

n

T 200 (00 T2 (r)) 28 T2 4 8, (00 T ()2l

where p,,, » = 0 or deg(pa,,r) < an if pa, » # 0 (Theorem 2.8 (i)). It is clear that
exp(Pa,,.r) < Qn. Again, using (1) in every term of the product z»r above, we
obtain

anp—1
2 = 02 (a4 0% ()i 4 S aln 6, (037 (5 (r)))ar !
j=1
anp—2
+ [o;';" 25 (0n())2 2 4 3 28608 (B (0m (1)) }x
j=1

an—3
’ [a;‘:” Hon(on(m))an T+ Y :Cﬁ"*?’*jén(affl(%(m%(ﬁ)))mfl}1’2

=1

+oot [an(an(as" 2(r )))xn+6n(6n(a;‘:"*2(r)))}x$" N G (D) e

which shows that

16(Pa, ) = Y onm P (Baloh 7} (r). (2)

In this way, we can see that lc(pg, ) involves elements obtained evaluating o, and
0n in the element r of R. Now, as an illustration, let us see the case of two and
three variables with the idea to establish a general fact about the coefficients of the
polynomials p,,, and po g in Theorem 2.8.

Consider the product z, "7 z%nr:

ay e = 2 (0 (N 4 Par)

e () E o S e
_ [ Qp— 1( (7")) 3” 11 +pan 110’nn(r)] "+ szElpavlyTa

where p, | son () = 0, or deg(pa, ;oo (r)) < An-1, if o, | son () # 0. Hence,

wptanrr = 0" (on (1) U R A Day s ot (TR TR T Doy (3)
with relations eXp(pan,l,aS”(r)I%n) = (deg(pan,ha,‘f”(r))van) = (anflvan)a
exp(z, T, 1 Panr) = (an- 1,deg(pamr)) < (ap—1,0ay), and both degrees

Qi

deg(panflyann(r)xn +) and deg(z5" " Pa,,.r) less than a,—1 + ap,. By (2) we have

Qn—1

) Z on 1 P (Gu-1(ah 1 (o0 (1)) (4)

Note that
le (pan 1,00™ (r)'ran) = 1C(pan,1,o'§f" (7‘))7
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and
le(2,"1" Pay,r) = (Zoan nlon ) Zf’a" Hopm P (8 (ah 1 (r)))-

In this way (3) can be expressed as

Qp Qn—1

zy e = o, (o ()@t e

Qn—1
deg(Pa,, _00m )

{Z oty n1<fffii(as"(r>>>>] - gon

[Z o ( P<6n<af;—1<r>>>>] 2 )

+ other terms of degree less than deg(p,,, , ,on(r)) + Qn
+ other terms of degree less than a,,—1 + deg(pa,, .r)-

(iii) Let us see a final example considering the case with three variables, that is,

Qnp—2 OQn—1 _ o Gn—2 Qn—1 o Qp—1 Qn—1
Lp_o Ty ‘T "r= Lo [Un 1 (Unn(T))xn 1 :E +p0¢n—110's"(7”) +xn 1 pan,r]

_ On— QAn—1 @ An—1_ .« QAn—2 a
= Tp—2 Un 1 (O’n"(’l”)).In 1T +In 2 Poy 1,02 (r) "

Ay — —
+ ‘rn72 ‘rnfl Pay,r
_ Qnp—2 Qp—1 (e 7% Qnp—2 an 1
= [0n"57 (0027 (o0 (7"))) 5" + Py 01 (oo (1) T 1 T
Qp—2 An—1
+ Lp—2 Pay_1,007 (r)T +xn 2 ‘Tn 1 Pan,rs
where P00  (00n (r)) = 0, or deg(pan,z,aﬁjl(aﬁ"(r))) < Qp_g if we have

Pa 00" (087 (1) # 0. Then

an2anlan_ Qp—2 Qn—1 Qn QAp—2 Onp_—1_«p anlan
n—2 Tp_1 Tn T Op—2 (Unfl (Uﬂ (T))):L’n 2 Tp1 Tn +pan,2, 1 (UD‘TL(T)) n—1 Zn

T

n—

Qp_o an Qp—2 « 1
+ 1z, Pa, 1,697 (r)Tn +mn72 Tp—1 Pan,r
where

exp(p = (deg(p an72)g:E;l(U%n (r)))’ Qn_1,0n)

Qn_2,0 anfl(dgn(T))
exp( n— 2 pan 1,00 (T)xzn) = (an*%deg(pan,l,of{"(r)ao‘n)

exp( z, 5 33 1 panm) = (an72a0‘nflvdeg(pamr))a

an 1

with degrees deg(pa 00t (08 () Tn ), deg(2, "5 P,y .00n n(maom), and
deg(z, "5 20" Pay, ) less than ay,—o + -1 + . 1t is clear that

an_1 _

16(Pg, g 02071 (oo () Tn1 ") =Py, gon it (gan i)

an—2,0,"7
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and by (2) and (4),

lc(pan,2,0a7l71 (oon (T))) -

n—1

QAp—2

1e(2, 2" Py 1 o () Tn") =

Qp—2 Qn—1 )7

lc(‘rnfé In771 Pa,,r

[e3

QA —2
Then the term z,,"5°x,,"

Otn—z(

Op—2 n—1 n

FQn 2

L p=1

r&n—1

L p=1

r%n

Lp=1

+ other terms of degree less than deg(p i

+ other terms of degree less than a,,—2 + deg(pa -

+ 1Y 0 PG a(0h 5 (o

DR AE e GGG (rm))] e

A. REYES

"'zl r can be written as

o (o ()

deg(p )

Om_1/ o R oL o)l B
no1 (0" (1)), —o ni1 Ty
:e_gfpanflvd%n(T))Izn

n— n— — — n— n— d an,T
S ol o (o P (B 1<r>>>>>] 22 g Penr)

Hogn(ry) Ot an

Qn—2,0, 1

3y agnm) +an

+ other terms of degree less than ay,_2 + ap—1 + deg(pa,, r)-

Continuing in this way we can see that for n variables we have

[ S eD) On—-1 _« _ (e%% % a1 02 a
Ty Tp™ Ty TR"T = 04 ( o (Unn (T))):El Ty~ xp”
a «
+ pal’o.;@(...(o-%n(r))).fz .. 'Inn
o a3, p0n
T T Pas,ofs ((onm () T3 n

a1 ,,02 Qg (e}
1 T T3 Doy 004 (- (08 (1) Ta T Tn"

n

aq Q2 Qn—2 «
+ + Ty Ty Tp—2 Poy_1,007 (r)Tn

%1
+ zt -

n

Qn—1
"Lp—1 Pay,,r-
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Considering the leading coefficients of z{" - - - 0" r we can write this term as

=o (- (opm(m)))art e
1 deg(p ag an )
1, ez, o a1,052 (@8 ()
+ [Zo 51(o¥ 1(022@33(---<a$"<r>>>>>>>}ml P og?
p=1
2wy, anp p—1, og o o 2 Pas 093 w8 () 4z om
+ D 0T (052 P (S2(0h Heg3 (- (anm (M) |25 2y T3” T,
p=1
S a1, an, as—pis  p—1, a an 5 1P oS3 () ay e
+ > ot (052 (o3 (83(c8 (ot (- (on™ (NN |27 x5 2wy Ty,
p=1
i a ap_2, Gp_1-P a 2on=2 des(p nfl’US"(T)) a
+o [ R G C APl R Y A "<r>>>>>>>] e, @y
p=1
+ [Z R R CONPR o O (i (7“))))))] cmy T gdes(Pan )
p=1

+ other terms of degree less than deg(pa n (T)))) +az+ -+ ap

as
1,052 (- (0

+ other terms of degree less than ay + deg(p 3 (L (o0 (r)))) +az+---+ap

@g,04

+ other terms of degree less than a1 + a2 + dcg(p +as+ - Fay

(o (opm (T))))

+ other terms of degree less than ay + -+ + an—2 + deg(p, n(T)) + an

—1:9n

+ other terms of degree less than a1 + -+ apn—1 + deg(panm).

Therefore we can see that the polynomials Pay 052 (057 (1)) Paz,ag® (-(aim (1))
Pavs,0%4 (o (08m (1)1 Pam 1,097 (1) and p,,, » in the expression above for the term

Qo . . . .
xPtag? -, adnr, involve elements obtained evaluating ¢’s and ¢’s in the ele-
ment r of R.

(iv) Consider the product a; X;b;Y;. If X; := 2%l .- 2% and Y; := 27" .- 2/". Then

azXzbJ}/J = aziaai (bj)$a1$/3] + aipai17o'?2i2(.__( ‘?‘in (b)))QTaiz cee $zln$ﬁj

Qi1 ) ) iz |, m 2B
+ a;xq Pain,oli3 (- (ofim (b)) T3

0411 @2 o o Qid | Qin B
+ a; T Ty pai3a‘7¢414("'( “in (b)))$4 T, T
0411 Qi . Yi(n—2) Qin .05
+ -t aryt g T2y Pay_1y.0%in () Tn " T

[} Xj(n—1)
+ @™ ") pay, b

As we saw above, the polynomials Pay 052 (-o(om (1)) Paz,o53 (- (a7 (1))
Pavs,0%4 (57 (1)))7 + + 2 Pan 1,097 (r)> a0 Pa, r, involve elements of R obtained
evaluating o; and d; in the element r of R. So, when we compute every summand
of a; X;b;Y; we obtain products of the coeflicient a; with several evaluations of b,
in ¢’s and ¢’s depending of the coordinates of «;.

3. XY-Rigid, Baer, quasi-Baer, p.p. and p.q.-rings

There are important examples of Baer rings which motivate the study of this notion. For
instance, von Neumann algebras (e.g., the algebra of all bounded operators on a Hilbert
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182 A. REYES

space), the commutative C*-algebra C(T') of continuous complex valued functions on a
Stonian space, and others, are remarkable examples in several contexts of mathematics.
Concerning ring theory, it is important to say that the class of Baer rings does not contain
the class of prime rings (these rings are quasi-Baer [5]) and is not closed under extensions
to matrix rings or triangular matrix rings. In the case of Ore extensions, the Baerness
and quasi-Baerness of a ring B do not inherite the Ore extension of B. More exactly,
there are examples which show that there exists a Baer ring B but the Ore extension
Blx;0,0] is not right p.q.-Baer; similarly, there exist Ore extensions B|x; o, §] which are
quasi-Baer, but B is not quasi-Baer. In general, the Baerness of B and Blz;c,d] does
not depend on each other (see [13], Examples 8, 9 and 10). Since Ore extensions of
injective type are particular examples of skew PBW extensions, the concepts of Baer,
quasi-Baer, and p.p. and p.q. are interesting for the ring theoretical study of skew
PBW extensions. Hence, in this section we generalize the results presented in [13] with
the purpose of establishing necessary and sufficient conditions to guarantee that these
concepts are stable under skew PBW extensions.

We recall some well-known facts. For a nonempty subset D of a ring B, we write
rg(D) = {¢ € B | Dc = 0} and Ig(D) = {¢ € B | ¢D = 0}, which are called the
right annihilator of D in B and the left annihilator of D in B, respectively. We recall
that a ring B is reduced if B has no nonzero nilpotent elements, and a ring B is called
abelian if every idempotent is central. Reduced rings are abelian and also semiprime
(that is, its prime radical is trivial), see [3].

We start with the following important result about reduced rings.

Lemma 3.1 ([13], Lemma 1). Let B be a reduced ring. Then the following statements are
equivalent:

(i) B is a right p.p.-ring;
(ii) B is a p.p.-ring;
(iii) B is a right p.q.-Baer ring;
)

(iv) B is a p.q.-Baer ring.

For a ring B with a ring endomorphism o : B — B, an o-derivation ¢ : B — B, con-
sidering the Ore extension B[z;o,d], Krempa in [16] defined o as a rigid endomorphism
if bo(b) = 0 implies b = 0 for b € B. Krempa called B o-rigid if there exists a rigid
endomorphism o of B. Since Ore extensions of injective type are particular examples of
skew PBW extensions, we present the following definition with the purpose of studying
the notion of rigidness for these extensions.

Definition 3.2. Let B be a ring and ¥ a family of endomorphisms of B. ¥ is called a
rigid endomorphisms family if ro®(r) = 0 implies » = 0 for every r € B and a € N". A
ring B is called to be X-rigid if there exists a rigid endomorphisms family 3 of B.

Note that if ¥ is a rigid endomorphisms family, then every element o; € ¥ is a monomor-

phism. In fact, ¥-rigid rings are reduced rings: if B is a Y-rigid ring and r? = 0 for
r € B, then 0 = 70%(r?)c®(c(r)) = ra®(r)o®(r)o*(c®(r)) = ra®(r)o®(ra®(r)), i.e.,
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ro®(r) = 0 and so r = 0, that is, B is reduced (note that there exists an endomor-
phism of a reduced ring which is not a rigid endomorphism, see [13], Example 9). With
this in mind, we consider the family of injective endomorphisms ¥ and the family A of
Y-derivations in a skew PBW extension A of a ring R (see Remark 2.4).

Lemma 3.3. Let B be an X-rigid ring and a,b € B. Then:

(1)
(i)
(i)
(iv)

If ab =0 then ac®(b) = c*(a)b =0 for a € N".
If ab = 0 then ad”(b) = §°(a)b =0 for B € N",
If ab = 0 then ac®(6%(b)) = ad®(a*(b)) = 0 for every a, B € N™.

If ao?(b) = 0% (a)b = 0 for some 6 € N", then ab = 0.

Proof. We follow the ideas presented in [13], Lemma 4.

(1)

It is enough to show that if ab = 0, then aoc;(b) = o;(a)b = 0 for every
1 < i < n. Consider the expression bo;(a)o;(bo;(a)). Since bo;(a)o;(boi(a)) =
boi(a)o;(b)o2(a) = bo;(ab)o?(a) = 0, we have bo;(a) = 0 (B is X-rigid). We know
that B is reduced, which implies 0 = o;(a)bo;(a)b = (0;(a)b)? so o;(a)b = 0.
Now, since we know that ba = 0 (from (ba)? = baba = 0 we have ba = 0) con-
sider the expression ac;(b)o;(ac;(b)). Since ac;(b)o;(ac;(b)) = ac;(b)oi(a)o?(b) =
ao;(ba)o?(b) = 0, then ac;(b) = 0.

Again, it is enough to prove that if ab = 0, then ad;(b) = §;(a)b = 0 for every
1<i<n Ifab=0,0=4(ab) = Ui(a)éi(b) + d;(a)b, so —d;(a)b = o;(a)d;(b),
whence —6;(a)ba;(a)d;(b) = [05(a)d;(b)]>. From (i) we can see that bo;(a) = 0, so
[05(a)6;(b)]> = 0 and hence ;(a)d;(b) = 0 (B is reduced), so §;(a)b = 0. Similarly,
since ba = 0, then ¢;(ba) = 0;(b)d;(a) + d;(b)a = 0, i.e., 0;(b)d;(a) = —d;(b)a, that
is, (0;(b)d;(a))? = —d;(b)ac;(b)d;(a) = 0 (ac;(b) =0 by (1)). Then o;(b)d;(a) = 0,
which imply d;(b)a = 0. Hence, ad;(b)ad;(b) = (ad;(b))* = 0, i.e., ad;(b) =0

(i).

Suppose that ac?(b) = 0 for some § € N". Then by (i) we have o¢?(ab) =

o%(a)o?(b) = 0. Since ¢? is injective, ab = 0. Similarly, if ¢%(a)b = 0 for some
6 € N", then ab = 0. o

The assertion follows from (i) and (ii

We have the following preliminary result.

Corollary 3.4. Suppose that A is a skew PBW extension of a ring R. If R is X-rigid and
ab =0 for a,b € R, then we obtain azx®bx® =0 in A for any o, f € N™.

Proof. The assertion follows from Remark 2.10 (iv). 4

Proposition 3.5. Let R be a ring. R is X-rigid if and only if the bijective skew PBW
extension A is a reduced ring. In this case, ex® = x%e for every o € N and e = ¢? € R.
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Proof. Let R be Y-rigid and suppose that A is not reduced. Then there exists a non-zero
element f € A such that f2 = 0. Since R is reduced, f ¢ R. Following Definition 2.7,
consider f =ag+ a1 X1+ -+ amXm, a; € R, 0<i<m, ap #0, with X; = 2% =
it -cxfinand X, = Xpm—1 > -+ > X1. By Theorem 2.8 (ii) we have

2= (amXm + -+ a1 X1+ ao)(amXm + -+ a1 X1 + ag)
= amXmamXm + other terms of order less than X, X,,
= am[09" (am) Xm + Pamam ]| Xm + -+
= a0 () XmXm + GmDan am Xm + - -

a 2c
amo " (am)[ca7n7amx " +p0¢7n;0¢7n] + ampam7a7nXm + T

where pa,,.a, = 0 or deg(Pan.am) < loml i DPapman 7 0, and pa,, ., =
or deg(Pa,,.an, = 0) < |am + am| if Pa,,.a, # 0. From the equality lc(f?)
Am 0™ (Gm)Can 0, = 0 we obtain a,,c*"(am,) = 0 (A is bijective). Lemma 3.3 (iv
imply a2, = 0, and so a,, = 0 (R is reduced), which is a contradiction. Hence, A is
reduced.

I o

~—

Conversely, since A is reduced, R is also reduced as a subring. Let us see that R is
Y-rigid. If @ € R and ac®(a) = 0, then 0 = 0%(a)z%ac®(a)z%a = (0%(a)z“a)?, and so
0%(a)z®a = 0. Thus, 0 = 0%(a)z%a = 0*(a)[0*(a)z* + Pa.a] = (0%(a))?z* + 0%(a)pa,a;
with pa.q = 0 or deg(pa.q) < | if pa,a # 0 (Theorem 2.8). Hence (¢*(a))? = 0, that is,
o%(a) = 0. Now, since ¢ is injective, we obtain a = 0, which shows that R is X-rigid.

Finally, let e be an idempotent in R. Since A is abelian, e is central and we have the
equality ex; = ;e = o;(e)z; + d;(e), whence e = o;(e) and d;(e) = 0. More generally,
for @ € N, we can see from Proposition 2.9 that ez® = x%e = 0%(€)z* + Pa,e, and so
e = 0%(e) and py, = 0 for every element « of N™. 4

For the next proposition, suppose that the elements ¢; ; in Definition 2.1 (iv) are in the
center of R, that is, they commute with every element of R.

Proposition 3.6. Suppose that R is an X-rigid ring. Let f = ag + a1 X1 + -+ + amXm,
g=byo+b1Y1 + -+ bY; be elements of a bijective skew PBW extension A of R. Then
fg =0 1if and only if a;b; =0 for all0 <i<m, 0 <5<t

Proof. Suppose that fg = 0. We have fg = (ag+ a1 X1+ +amXm)(bo+ 01 Y1+ -+
bY:) = Sy (Ziﬂ-_k aiXiijj)- Note that lc(fg) = amo®™ (bt)ca,, 5, = 0. Since A

is bijective, a;,o®m (b)) = 0, and by Lemma 3.3 (iv), a;,by = 0. The idea is to prove
that a,by = 0 for p 4+ ¢ > 0. We proceed by induction. Suppose that a,b, = 0 for
p+g=m+tm+t—1,m+t—2,...,k+1 for some k > 0. By Corollary 3.4 we obtain
apXpbeYy = 0 for these values of p + ¢. In this way we only consider the sum of the
products G, X, by Yy, where u+v =k, k—1,k—2,...,0. Fix v and v. Consider the sum
of all terms of fg having exponent «,, + 3,. By Proposition 2.9, Remark 2.10, and the
assumption fg = 0, we know that the sum of all coeflicients of all these terms can be
written as

ay 0" (by)Ca,. 8, + Z aw o™ (0's and ¢'s evaluated in by )cq,, 5, = 0. (5)
Otu/"l‘Bv/ =ay+Pu
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By assumption we know that a,b, =0 for p+q¢=m+t,m+t—1,...,k+1. So, Lemma
3.3 (iii) guarantees that the product

ap(o’s and ¢'s evaluated in b;) (any order of o’s and §'s)

is equal to zero. Then [(¢'s and §’s evaluated in b,)a,]?> = 0 and hence we obtain the
equality (¢’s and §’s evaluated in by)a, = 0 (R is reduced). In this way, multiplying (5)
by ay, and using the fact that the elements ¢; ; in Definition 2.1 (iv) are in the center of
R,

a0 (by)agca, g, + E a0 (0's and s evaluated in by )agca,, g, =0,
ayr+Byr=au+By

whence, a,,0% (bg)ay = 0. Since u+v = k and v = 0, then u = k, so apo® (bg)ar =0
ie., [axo® (b)]> = 0, from which aro®* (by) = 0 and arby = 0 by Lemma 3.3 (iv).
Therefore, we now have to study the expression (5) for 0 <u <k—landu+v==k. I
we multiply (6) by ax_1 we obtain

/ 7 .
a0 (by)ak—1Cay By + E a0 (o's and ¢'s evaluated in byr)ar—1ca,, p,, = 0.
a1 +B,r=ay+By

Using a similar reasoning as above, we can see that a,0%*(b1)ax—1c¢a, s, = 0. Since A is
bijective, a, 0% (b1)ag—1 = 0, and using the fact u = k — 1, we have [ag_10%-1(b1)] = 0,
which imply ax_10%-1(b1) = 0, that is, ax_1b; = 0. Continuing in this way we prove
that a;b; = 0 for ¢ + j = k. Therefore a;b; =0for 1 <i<mand1<j <t

The converse follows from Corollary 3.4. ]

Corollary 3.7. Suppose that R is an S-rigid ring. If e> = e € A, where e = ey + 1. X1 +
s 4 emXm, then e = eq.

Proof. Consider the equality 1 —e = (1 —ep) — >~ ¢;X;. By assumption e(1 —¢) = 0,
and then Proposition 3.6 implies eg(1 — ep) = 0 and ef =0foralll <i<m. Since R is
reduced, e; = 0 for every 1 < i < m, which shows that e = ¢y = 6(2) € R. ]

Remark 3.8. Proposition 3.6 establishes a relation between Y-rigid rings and a skew
notion of Armendariz rings. It is to be expected some stable relations between these
rings and skew PBW extensions generalizing the case developed for Ore extensions of
injective type presented in [19]. However, since this topic exceeds the scope and the size
of this paper, in a forthcoming paper we will establish some results about this property
for skew PBW extensions.

Next we prove one of the key results of this paper.

Theorem 3.9. Let R be an X-rigid ring. Then R is a Baer ring if and only if A is a
Baer ring.

Proof. Suppose that R is a Baer ring. Let S be a nonempty subset of A and S* be
the set of all coefficients of elements of S. Then S* is nonempty subset of R and so
rr(S*) = eR for some idempotent e of R. Since e € r4(5), we get eA C r4(S). Now,
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let 0 £ g =0by+bX1 4+ +bnXym €7ra(S). Then Sg = 0 and so fg = 0 for any
f € S. In this way bg,b1,...,by € Tr(S*) = eR by Proposition 3.6. Then there exist
€0y Cly--- Cm € Rwith g=eco+ec; X1+ +ecmXm =e(co+crx+---+epmXm) € eA.
Hence eA = r4(S), that is, A is Baer.

Now, assume that A is Baer. Let B be a nonempty subset of R. Then r4(B) = eA for
some idempotent e € R by Corollary 3.7. Therefore rg(B) =r4(B)NR =eANR = eR,
which shows that R is Baer. v

Birkenmeier in [3], Lemma 1, establishes that if B is a reduced ring, then B is quasi-Baer
if and only if B is an abelian Baer ring. This fact together with Proposition 3.5 and
Theorem 3.9 guarantee the following result about skew PBW extensions of quasi-Baer
rings.

Theorem 3.10. Let R be an X-rigid ring. Then R is a quasi-Baer ring if and only if A
is a quasi-Baer ring.

Remark 3.11. (i) ([9], Example 2.8). Let B = k[t] be the polynomial ring over a field
k and o be the endomorphism given by o(f(¢)) = f(0). Then B is quasi-Baer but
the ring Blz; o] is not a quasi-Baer ring. This example shows that the assumption
on R (injective endomorphisms due to X-rigid) is not a superfluous condition in
Theorem 3.10 (and, of course, Propositions 3.5 and 3.6). Another examples which
show the importance of rigidness of R can be found in [13], Examples 9 and 10 (1).

(ii) ([2], Example 11). There is a ring B and a derivation § of B such that Blz;d] is a
Baer ring but B is not quasi-Baer. Let B = Z[t]/(t?), with the derivation § such
that §(f) = 1 where £ = t + (t?) in B, and Zs][t] is the polynomial ring over the field
Zs of two elements. Consider the Ore extension B[x;d]. If we set e11 = tx, e12 = ¢,
ea1 = tx? +z, and egn = 1+t in B[z;d], then they form a system of matrix units
in Blx;8]. Now the centralizer of these matrix units in B|x; 6] is Za[2?]. Therefore
Blx; 6] =2 My(Zsa[2?]) =2 Ma(Zs)[y], where Ms(Z2)[y] is the polynomial ring over
M>5(Zs). So the ring Blz; ] is a Baer ring, but B is not quasi-Baer.

(iii) Since prime rings are quasi-Baer, if A is a bijective skew PBW extension of a prime
ring R, then A is prime ([24], Proposition 3.3 or [18], Corollary 4.2) and hence
quasi-Baer.

From [13], Example 10 (2), we know that there exists a right p.p.-ring B such that
Blx;0,0] is not a right p.p.-ring. This observation motives the next result for skew PBW
extensions of p.p.-rings.

Theorem 3.12. Let R be an X-rigid ring. Then R is a p.p.-ring if and only if A is a
p.p.-TiNg.

Proof. Suppose that R is a p.p.-ring. Let f = ag+a1 X1+ -+ anXm € A. There exists
an idempotent e; € R with rg(a;) = e;R for i = 0,1,...,m. Let e := egey - - - €,,. Since
every e; is central, e? = e, and besides we can see that eR = ()", 7r(a;). By Proposition
3.5, we know that fe = ape + a1 X1e+ -+ anXme = ape + a1eX1 + -+ - + ame X, = 0.
In this way, eA C ra(f). Now, let ¢ = by + b1 X1 + -+ Xi € ra(f). Using the
fact fg = 0, Proposition 3.6 implies a;b; = 0 for 0 < ¢ < m and 0 < j < ¢t. Hence
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bj € eper - --en R = eR for all j, which shows g € eA. Therefore the equality eA = r4(f)
is proved, that is, A is a p.p.-ring.

Now, suppose that A is a p.p.-ring, and consider an element » € R. Then there exists
an idempotent e € A with r4(r) = eA, and by Corollary 3.7 we know that e € R, so
rgr(r) = eR, that is, R is a p.p.-ring. v

Lemma 3.1, Proposition 3.5, and Theorem 3.12 imply the following result about skew
PBW extensions of p.q.-Baer rings.

Theorem 3.13. Let R be an X-rigid ring. Then R is a p.q.-Baer ring if and only if A is
a p.q.-Baer ring.

Remark 3.14. In Propositions 3.5 and 3.6 we do not assume that the injective endo-
morphisms o; of ¥ are bijective, that is, we only use the fact that the elements c; ; are
invertible. In this way, Theorems 3.9, 3.10, 3.12, and 3.13 are valid for general skew
PBW extensions satisfying these conditions on the elements c; ;.

4. Examples

In this section we present some remarkable examples of skew PBW extensions which can
not be expressed as Ore extensions (a more complete list can be found in [17] or [23]).

(a) Let k be a commutative ring and g a finite dimensional Lie algebra over k with
basis {z1,...,x,}. The universal enveloping algebra of g, denoted U(g), is a skew
PBW extension of k (see [17]), since z;r — rx; = 0, z;x; — x;2; = [T, 5] € g =
k+kxy+-- -+ kxy, 7€k, for 1 <4,7 <n. In particular, the universal enveloping
algebra of a Kac-Moody Lie algebra is a skew PBW extension of a polynomial ring.

(b) The universal enveloping ring U(V, R, k) introduced by Passman [22|, where R is
a k-algebra, and V is a k-vector space which is also a Lie ring containing R and k
as Lie ideals with suitable relations. The enveloping ring U(V, R, k) is a finite skew
PBW extension of R if dimg (V/R) is finite.

(c¢) Let k, g, {x1,...,2,} and U(g) be as in the previous example; let R be a k-algebra
containing k. The tensor product A := R ®j U(g) is a skew PBW extension of
R, and it is a particular case of crossed product R xU(g) of R by U(g), which is a
skew PBW extension of R (see [20]).

(d) The twisted or smash product differential operator ring R #, U(g), where g is a
finite-dimensional Lie algebra acting on R by derivations, and o is Lie 2-cocycle
with values in R.

(e) Diffusion algebras arise in physics as a possible way to understand a large class of

1-dimensional stochastic process. A diffusion algebra (see [12]) A with parameters

a;; € C\ {0},1 <i,j <mn,is an algebra over C generated by variables x1,...,z,
subject to relations

AijjTiTj — bijxjxi =TTy —TiTj, (7)

whenever i < j, b;j;,r; € C for all i < j. A admits a PBW-basis of standard
monomials z7' - - -z, that is, A is a diffusion algebra if these standard monomials
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are a C-vector space basis for A. From Definition 2.1, (iii) and (iv), it is clear that
the family of skew PBW extensions are more general than diffusion algebras.

Following [12], p. 22, “in the applications to physics the parameters a;; are strictly

positive reals and the parameters b;; are positive reals as they are unnormalised
measures of probability. We will denote ¢;; := le . The parameter g;; can be a root
of unity if and only if is equal to 1. It is therefore reasonable to assume that these
parameters not to be a root of unity other than 1”. If all coefficients g;; in (7) are
nonzero, then the corresponding diffusion algebra have a PBW basis of standard

monomials z{* - - - z!», and hence these algebras are skew PBW extensions. More

n

precisely, A = o(C){(x1,...,x,).
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